盾构隧道破损管片修复竖井回填过程中的荷载分布规律
陈东1连逢逾1贾培文2任天烁3
Law of Load Distribution in Shield Tunnel Damaged Segment Repair and Vertical Shaft Backfilling Process
CHEN DongLIAN FengyuJIA PeiwenREN Tianshuo
-
作者信息:1.成都轨道建设管理有限公司, 610041, 成都
2.中国交通建设股份有限公司轨道交通分公司, 102209, 北京
3.地质灾害防治与地质环境保护国家重点实验室(成都理工大学),610059, 成都
-
Affiliation:Chengdu Railway Construction Management Co., Ltd., 610041, Chengdu, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2023.09.022
-
中图分类号/CLCN:U455.8
-
栏目/Col:研究报告
摘要:
目的:在地铁隧道管片修复过程中,一般通过明挖工作竖井到达隧道破损衬砌管片表面,进而修复隧道结构。但在回填工作竖井时,其内部回填材料作用于盾构隧道拱部的荷载分布规律尚不明确,因此需对隧道破损采样修复竖井的回填材料及竖井回填过程中的荷载分布规律进行研究。方法:建立盾构隧道修复竖井回填有限元模型;选取砂土、轻质混凝土、卵石土这3种回填材料,分析修复竖井回填荷载传递规律和荷载分布特征。结果及结论:当修复竖井回填材料为轻质混凝土时,竖井底部应力最小;当轻质混凝土回填高度达到174 m时,竖井底部应力为5558 kPa;竖井回填过程中对隧道拱顶造成的荷载形式为均布荷载;随着竖井累计回填高度的增加,盾构隧道拱部荷载呈指数函数增加;当竖井回填高度大于60 m后,隧道拱部荷载增长减缓并逐渐趋于稳定。
Abstracts:
Objective: During the repair process of metro tunnel segments, the damaged lining segments are typically repaired by workers accessing the surface through an open excavation vertical work shaft and subsequently restoring the tunnel structure. However, when backfilling the shaft the law of load distribution on shield tunnel arch exerted by internal backfilling materials remains unclear. Therefore, it is necessary to study the backfilling materials sampled from tunnel damages for vertical shaft repair, as well as the load distribution law throughout vertical shaft backfilling process. Method: A finite element model of the shield tunnel vertical shaft repair and backfilling is established. Three types of backfilling materials: sand, lightweight concrete, and gravel soil, are selected for analyzing of the load transfer and distribution law during vertical shaft repair and backfilling. Result & Conclusion: When lightweight concrete is used as the vertical shaft backfilling material, the stress at shaft bottom is minimized. When its backfilling height reaches 17.4 m, the stress on shaft bottom is 55.58 kPa. The load exerted on tunnel arch crown throughout vertical shaft backfilling process is uniformly distributed. As the cumulative backfilling height in the vertical shaft increases, the load on shield tunnel arch crown increases exponentially. When the backfilling height in the vertical shaft exceeds 6.0 m, the growth of load on tunnel arch crown slows down and gradually becomes stable.