考虑接触传热的城市轨道交通列车摩擦副温度场仿真及试验验证
孙宁远1,2朱文良1杨子杰1薛文胜1吴娜3余朝刚1
Simulation and Experimental Verification of Urban Rail Transit Train Friction Pair Temperature Field Considering Contact Heat Transfer
SUN Ningyuan1,2ZHU Wenliang1YANG Zijie1XUE Wensheng1WU Na3YU Chaogang1
-
作者信息:1.上海工程技术大学城市轨道交通学院, 201620, 上海
2.上海地铁维护保障有限公司车辆分公司, 200235, 上海
3.中车长春轨道客车股份有限公司轨道交通车辆系统集成实验室, 130062, 长春
-
Affiliation:1.School of Urban Rail Transportation, Shanghai University of Engineering Science, 201620, Shanghai, China
2.Vehicle Branch of Shanghai Metro Maintenance Support Co., Ltd., 200235, Shanghai, China
3.Rail Transit Vehicles System Integration Laboratory Changchun CRRC Rail Vehicles Co., Ltd., 130062, Changchun, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.20230689
-
中图分类号/CLCN:U270.35
-
栏目/Col:车辆制造与列车控制
摘要:
[目的]为解决城市轨道交通列车在运行过程中由于频繁制动、摩擦副温度急剧升高,而引起的车轮踏面和闸瓦损伤、热裂纹等问题,需建立精准温升模型,以研究不同制动工况下的温度场演变规律。[方法]基于热传导理论,建立了考虑车轮-闸瓦接触热传导系数的三维瞬态温升仿真模型,采用ABAQUS有限元软件对摩擦副温度场进行数值模拟。在模型构建过程中,综合考虑接触热传导系数、材料热物理参数、对流换热系数等关键因素,通过网格独立性验证确保计算精度。设置列车载重为AW3(超常载荷)、列车初始运行速度为80 km/h、制动减速度为1.2 m/s2的工况条件,仿真分析了单次紧急制动和连续3次紧急制动情况下的车轮闸瓦摩擦副温度变化情况。[结果及结论]单次紧急制动工况下,考虑及不考虑接触热传导系数的闸瓦表面温度相差了71.17 ℃;闸瓦轴向温度主要集中于闸瓦中心区域,径向温度主要集中于闸瓦表面且温度梯度较大。连续3次紧急制动工况下,闸瓦仿真温度分别为217.40 ℃、245.78 ℃和270.70 ℃;与试验采集温度相比,两者的最大误差为3%。
Abstracts:
[Objective] To address the damage to wheel treads, brake shoes, and the thermal cracks caused by frequent braking and sharp temperature rises in friction pairs of urban rail transit trains in operation, it is necessary to establish an accurate temperature rise model to investigate the evolution law of temperature fields under different braking conditions. [Method] A three-dimensional transient temperature rise simulation model considering the contact thermal conductivity coefficient of the wheel-brake shoe pair is developed based on heat conduction theory. The ABAQUS finite element software is employed to numerically simulate the temperature field of the friction pair. During the model construction, key factors such as contact thermal conductivity coefficients, material thermophysical parameters, and convective heat transfer coefficients are comprehensively taken into account, and the grid independence verification ensures computational accuracy. Working conditions for a train load are set to AW3 full capacity (abnormal weight), the initial operating speed to 80 km/h, and the braking deceleration to 1.2 m/s2. The temperature variation of the wheel-brake shoe friction pair is analyzed through simulation under conditions of a single emergency braking and three consecutive emergency brakings. [Result & Conclusion] Under the single emergency braking working condition, the surface temperature difference of the brake shoes considering and neglecting the contact thermal conductivity coefficient is 71.17 ℃; axial temperatures of the brake shoes are concentrated in its central region, while radial temperatures are primarily distributed on brake shoe surface with significant temperature gradients. Under the three consecutive emergency braking events, the brake shoe simulated temperatures are 217.40 ℃, 245.78 ℃, and 270.70 ℃, respectively; compared with experimentally measured temperatures, the maximum error between them is 3%.