中速磁浮列车雷电试验及仿真研究
杨君1王永刚1潘钦2熊秀2
Lightning Test and Simulation Research for Medium-speed Maglev Train
YANG Jun1WANG Yonggang1PAN Qin2XIONG Xiu2
-
作者信息:1.中车唐山机车车辆有限公司, 063035, 唐山
2.西安爱邦电磁技术责任有限公司, 710077, 西安
-
Affiliation:1.CRCC Tangshan Co., Ltd., 063035, Tangshan, China
2.Xi’an Airborne Electromagnetic Technology Co., Ltd., 710077, Xi’an, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2024.04.016
-
中图分类号/CLCN:U292.91+7
-
栏目/Col:研究报告
摘要:
[目的]中速磁浮列车在高架线路上运行时,车身有可能遭受雷击。若中速磁浮列车车体采用复合材料,在遭受雷击时有可能受损甚至被击穿,进而使乘客受到雷击伤害。为此,需要在复合材料车体设计时进行防雷设计,而雷电在列车上的附着点是设计的关键。[方法]制作了中速磁浮列车单节车厢的精确缩比模型,阐述了磁浮列车雷电附着点试验的依据、试验件、试验方法及试验结果。采用COMSOL Multiphysics有限元数值仿真软件,将中速磁浮列车雷电附着点的区域分为车头风挡、车身顶部、侧棱、侧棱尖端、设备安装区域以及地面6个部分,并对整车进行了雷电仿真计算。[结果及结论]通过列车缩比模型雷电试验获得了单节车厢较为详细的雷电附着点分布情况,雷电仿真得到列车表面电场分布情况,仿真结果与试验结果相吻合。结合试验及仿真结果,提出了中速磁浮列车的雷电防护设计建议。
Abstracts:
[Objective] When medium-speed maglev trains operate on elevated tracks, the carbody is susceptible to lightning strikes. If composite materials are adopted for medium-speed maglev train carbody, damage or even penetration can happen during a lightning strike, further posing lightning-related harm to passengers. For this situation, it is necessary to incorporate lightning protection design into the design of composite material train carbody, with the key focus on the attachment points of lightning on the train. [Method] A precise scaled model of a single compartment for the medium-speed maglev train is created, and the test basis, test specimens, test methods, and test results of the lightning attachment point test on maglev train are elaborated. Using COMSOL Multiphysics finite element numerical simulation software, the region of lightning attachment points on the medium-speed maglev train is divided into six parts: front windshield, carbody top, side edge, tip of side edge, equipment installation area, and ground. Lightning simulation calculations are carried out on the entire train. [Result & Conclusion] Detailed information on the distribution of single compartment lightning attachment points is obtained through lightning tests on the scaled train model. The electric field distribution on train surface is obtained through lightning simulation, and the simulation results are in good agreement with the test results. Combining the test and simulation results, a lightning protection design scheme for medium-speed maglev trains is proposed.