基于集成深度学习的转辙机故障诊断研究
李雪枝1杨勇豪1汪旭雷1欧志龙2皮金龙2
Research on Switch Machine Fault Diagnosis Based on Integrated Deep Learning
LI Xuezhi1YANG Yonghao1WANG Xulei1OU Zhilong2PI Jinlong2
-
作者信息:1.成都地铁运营有限公司, 610081, 成都
2.成都交控科技有限公司, 610041, 成都
-
Affiliation:1.Chengdu Metro Operation Co., Ltd., 610081, Chengdu, China
2.Chengdu Jiaokong Technology Co., Ltd., 610041, Chengdu, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2024.04.049
-
中图分类号/CLCN:U213.6+1
-
栏目/Col:产学研视窗
摘要:
[目的]为了能够充分利用故障日志数据诊断转辙机故障,提出了基于集成学习算法的道岔转辙机故障诊断方法。[方法]通过分析转辙机故障文本数据,并结合专家经验,建立了两级故障诊断思路;将故障文本数据预处理为机器能够识别的数据,作为故障诊断模型输入数据;介绍了基于AdaBoost集成学习法的CNN(卷积神经网络)-LSTM(长短期记忆网络)故障诊断模型的原理和方法。[结果及结论]试验结果表明,在数据类别不平衡或者样本数量有限的情况下,采用CNN-LSTM模型能够有效提高故障诊断的准确率;与其他故障诊断模型相比,CNN-LSTM模型性能更好;所提出方法具有有效性,能够满足应用场景准确率要求。
Abstracts:
[Objective] To make full use of fault log data for diagnosing switch machine faults, a fault diagnosis method based on integrated deep learning is proposed. [Method] By analyzing the textual data of switch machine faults and combining expert experiences, a two-level fault diagnosis approach is established. The fault text data is preprocessed into machine-readable data, serving as input data for the fault diagnosis model. The principle and method of the CNN-LSTM fault diagnosis model based on the AdaBoost integrated deep learning method are introduced. [Result & Conclusion] Experimental results demonstrate that under conditions of data class imbalance or limited sample size, the CNN-LSTM model can effectively improve the accuracy of fault diagnosis. Compared with other fault diagnosis models, the CNN-LSTM model performs better. The proposed method is effective and can meet the accuracy requirements of application scenarios.
- 上一篇: 基于双目定位和同步触发的城市轨道交通工务综合检测车
- 下一篇: -