城市轨道交通列车自主运行系统与CBTC系统降级影响对比

王晨1高豪2费薄俊3凌小雀2徐海贵2

Comparison between TACS and CBTC System Degradation Impacts in Urban Rail Transit

WANG Chen1GAO Hao2FEI Bojun3LING Xiaoque2XU Haigui2
  • 作者信息:
    1.上海地铁维护保障有限公司, 200030, 上海;
    2.上海卡斯柯信号有限公司, 200040, 上海;
    3.上海地铁第一运营有限公司, 200092, 上海
  • Affiliation:
    1.Shanghai Metro Maintenance Support Co., Ltd., 200030, Shanghai, China;
    2.CASCO Signal Ltd., 200040, Shanghai, China;
    3.Shanghai MTR No.1 Operation Co., Ltd., 200092, Shanghai, China
  • 关键词:
  • Key words:
  • DOI:
    10.16037/j.1007-869x.20253086
  • 中图分类号/CLCN:
    U231.7
  • 栏目/Col:
    通信信号
摘要:
[目的]为满足日益增长的城市轨道交通运能需求,传统以地面联锁为核心架构的CBTC(基于通信的列车控制)信号系统,正朝着由车地联锁核心架构的TACS(列车自主运行系统)演进,有必要对TACS各核心组件发生故障后所造成的降级影响进行评估。[方法]基于TACS和CBTC系统不同的架构及功能特点,从各核心子系统失效的场景出发,分析对比对了两系统在各自核心模块故障的降级影响。[结果及结论]TACS中的核心设备采用了冗余技术更加完善的硬件架构,总体可靠性高于CBTC系统。相较于CBTC系统中功能类似的CI(计算机联锁)子系统和LC(线路控制器)子系统,TACS中的WRC(轨旁资源管理器)子系统和WTC(轨旁列车管理器)子系统发生故障后的影响更小;相比于CBTC系统,TACS列车发生空转打滑后,降级影响小、恢复效率高,全过程自动化程度高;TACS 系统中发生CC(车载控制器)故障和OC(目标控制器)故障后的降级影响和CBTC系统中同类型设备发生故障的影响程度相当;发生车-地无线通信网络故障后,从列车运行效率来看,TACS和未装备点式模式的CBTC系统相当,稍逊于装备点式模式的CBTC系统。
Abstracts:
[Objective] To meet increasing urban rail transit capacity demands, traditional CBTC (communication-based train control) signaling systems-with ground-based interlocking as core architecture-are evolving toward TACS (train autonomous circumnavigation system) with vehicle-wayside interlocking architecture. It is essential to evaluate degradation impacts resulting from failures in TACS core components. [Method] Based on the distinct architectures and functional characteristics of TACS and CBTC systems, from the failure scenarios of their core subsystems, the degradation impacts of each system due to the core module failures are examined and compared. [Result & Conclusion] The core equipment in TACS employ hardware architectures with enhanced redundancy technology, demonstrating higher overall reliability than CBTC system. Compared to functionally similar CI (computer interlocking) and LC (line controller) subsystems in CBTC, while failures in TACS WRC (wayside resource controller) and WTC (wayside train controller) subsystems cause less degradation impacts. Following wheel slipping incidents, TACS exhibits less degradation impact, higher recovery efficiency, and greater automation level throughout the process versus CBTC. Degradation impacts from CC (carbornes computer) or OC (onboard controller) failures in TACS system are comparable to those of equivalent equipment failures in CBTC system. In the case of vehicle-wayside wireless communication network failure, from the perspective of train operational efficiency, TACS is equivalent to CBTC system without spot mode, but showing lower performance compared to CBTC system with spot mode.
论文检索