基于向量自回归模型和小波分析法的列车充电机电流传感器故障检测方法
陈美霞梁师嵩胡佳乔
Train Charger Current Sensor Fault Detection Method Based on VAR Model and Wavelet Analysis
CHEN MeixiaLiang ShisongHu Jiaqiao
-
作者信息:中车南京浦镇车辆有限公司, 210031, 南京
-
Affiliation:CRRC Nanjing Puzhen Co., Ltd., 210031, Nanjing, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2022.04.032
-
中图分类号/CLCN:TP212.13
-
栏目/Col:应用技术
摘要:
梳理了列车充电机电流传感器的运行机理,分析了两台充电机输出电流数据,提出了基于向量自回归模型和小波分析法的列车充电机电流传感器故障检测方法。以南京地铁宁溧线(S7线)列车为例,验证了该方法的准确性,能够检测出故障并能判别出故障类型。
Abstracts:
The operation mechanism of train charger current sensor is sorted. The output current data of two chargers are analyzed. The train charger current sensor fault detection method based on VAR (vector autoregression) model and wavelet analysis is proposed. Taking Nanjing Metro Ningli Line (S7) train as an example, the accuracy of the method is verified, with faults being detected and fault types being identified.
引文 / Ref:
陈美霞, 梁师嵩, 胡佳乔. 基于向量自回归模型和小波分析法的列车充电机电流传感器故障检测方法. 城市轨道交通研究, 2022, 25(4): 152.
CHEN Meixia, Liang Shisong, Hu Jiaqiao. Train charger current sensor fault detection method based on VAR model and wavelet analysis. Urban Mass Transit, 2022, 25(4): 152.
CHEN Meixia, Liang Shisong, Hu Jiaqiao. Train charger current sensor fault detection method based on VAR model and wavelet analysis. Urban Mass Transit, 2022, 25(4): 152.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 智慧轨道交通为冬奥会添彩