基于环形电磁线圈的轮轨增压方案

应之丁李艺桂安登

Wheel-rail Pressurization Scheme Based on Electromagnetic Ring Coil

YING ZhidingLI YiGUI Andeng
摘要:
针对列车制动时黏着力不足的问题,基于车轮结构和电磁学基本原理提出一种固定在转向架上的环形电磁线圈方案。该方案利用电磁线圈磁化车轮,使其对轨道产生垂向吸力以增加轴重。对所提方案设置内嵌环形线圈励磁模型和外置环形线圈励磁模型,并基于Ansoft Maxwell电磁场分析软件分析了两种模型的磁感应强度、垂向电磁吸力等参数。计算结果表明:在内嵌环形线圈励磁模型中,轮轨的增压效果不明显,其增加轴重的调节效果不显著;而在外置环形线圈模型中,轮轨接触位置产生了更稳定的励磁作用,轮轨处可获得较大的垂向电磁吸力,车轮增压效果明显。
Abstracts:
Aiming at the problem of insufficient adhesion during train braking, based on the wheel structure and the basic principle of electromagnetism, a scheme of electromagnetic ring coil fixed on bogie is proposed. The scheme uses electromagnetic coil to magnetize the wheel, generating vertical attraction on the track to increase axle load. Embedded ring coil excitation model and external ring coil excitation model are set in the mentioned scheme, and parameters of the two models such as electromagnetic flux density and vertical electromagnetic adhesion are analyzed using Ansoft Maxwell electromagnetic field analysis software. Calculation results show that in the embedded ring coil excitation model, the pressurization effect on wheel-rail is not obvious, as well as the adjustment effect of axle load increase; while in the external ring coil model, more stable excitation has been produced on wheel-rail contact position, and the wheel-rail can obtain larger vertical electromagnetic attraction, demonstrating evident pressurization effect on the wheel.
论文检索