基于温振融合与深度自编码器的高速 动车组轴箱轴承故障诊断模型
王中尧1,2王连富2麻竞文2崔旺3
High-speed EMU Axle Box Bearing Fault Diagnosis Model Based on Thermal-vibration Fusion and Deep Auto-encoder
WANG ZhongyaoWANG LianfuMA JingwenCUI Wang
-
作者信息:1.1. 大连交通大学机械工程学院, 116033, 大连;
2.2. 中车长春轨道客车股份有限公司国家轨道客车工程研究中心,
3.130062,长春
4.3. 西南交通大学牵引动力国家重点实验室, 610031, 成都
-
Affiliation:School of Mechanical Engineering, Dalian Jiaotong University, 116033, Dalian, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2023.04.009
-
中图分类号/CLCN:U266.233.1+2
-
栏目/Col:研究报告
摘要:
因物理监测信息利用不足,动车组轴箱轴承故障诊断存在准确率较低问题。首先,利用高速动车组轴箱轴承试验台获取丰富数据,融合温度特征数据与振动特征数据,并使用主成分分析法进行融合与降维;然后,建立基于温振融合与DAE(深度自编码器)的轴箱轴承故障诊断模型,并通过深度自编码器进行模型训练;最后,用高速动车组轴箱轴承试验台测试集的数据进行模型验证。验证结果表明:与其他对比模型相比,基于温振融合与DAE的轴箱轴承故障诊断模型的诊断准确率更高。
Abstracts:
Because of the insufficient use of physical monitor-ing information, the fault diagnosis of EMU (electric multiple unit) axle box bearing has a low accuracy rate problem. First, highspeed EMU axle box bearing test bench is used to obtain ample data, integrate temperature and vibration feature data, and the PCA (principal component analysis) method is used for fusion and dimension reduction. Then, the axle box bearing fault diagnosis model based on temperature-vibration fusion and DAE (deep autoencoder) is established, and the model was trained by the DAE. Finally, the model is verified by the test set data obtained from the high-speed EMU axle box bearing test bench. Verification results show that, compared with other comparative models, the axle box bearing fault diagnosis model based on temperature-vibration fusion and DAE has higher accuracy rate.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 数字时代新征程