拱盖法暗挖地铁车站风道接主体进洞技术方案分析
马全武1雷刚2刘明明3董亚男2杨沚蕙2
Technical Solution Analysis of Air Duct to Main Tunnel-Introduction Scheme at Archcover Method Excavated Metro Station
MA QuanwuLEI GangLIU MingmingDONG Ya’nanYANG Zhihui
-
作者信息:1.青岛地铁集团有限公司, 266011, 青岛
2.北京城建设计发展集团股份有限公司, 100037, 北京
3.中国电建集团昆明勘测设计研究院有限公司, 650051, 昆明
-
Affiliation:Qingdao Metro Group Co., Ltd., 266011, Qingdao, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2023.09.008
-
中图分类号/CLCN:U231.3
-
栏目/Col:研究报告
摘要:
在施工过程中,当风道等附属结构转入车站主体施工时,两者连接处的受力复杂,施工难度较大,因此需对地铁车站风道接主体进洞技术方案进行研究,选择一个合理的接口形式,以保证施工工程的质量与安全。方法:以青岛地铁某拱盖法施工车站工程为例,采用MIDAS GTS软件建立风道接口有限元模型;结合现场监测数据,对比分析风道挑高半断面进洞方案、风道挑高全断面进洞方案、风道压低半断面进洞方案和风道压低全断面进洞方案的地面位移与支护结构应力。结果及结论:风道压低与风道挑高方案相比,风道压低方案的最大竖向位移为840 mm,风道挑高方案的最大竖向位移为2170 mm,其是风道压低方案的26倍;施工结束后,风道压低方案的最终竖向位移为134 mm,风道挑高方案的最终竖向位移为1050 mm;风道压低方案中,全断面进洞方案的最终竖向位移为142 mm,半断面进洞方案的最终竖向位移为126 mm。综合考虑4种方案的支护结构应力分析结果,风道压低全断面接口方案的支护结构应力偏小且满足强度要求,因此风道压低全断面接口方案为最优方案。
Abstracts:
During construction, when auxiliary structures such as air ducts are transferred to the station main structure construction, the connection between them experiences complex forces and the construction faces significant challenges. Therefore, it is necessary to study the technical solutions of air duct to main tunnelintroduction scheme at metro station and an appropriate interface form is selected to ensure the quality and safety of the construction project.Method: Taking a station project of Qingdao Metro constructed by archcover method as an example, the finite element model of air duct interface is established using MIDAS GTS software. With reference to fieldmeasured data, the ground displacement and support structure stress of the following schemes are comparatively analyzed: air duct elevated halfsection entry scheme, air duct elevated fullsection entry scheme, air duct depressed halfsection entry scheme, and air duct depressed fullsection entry scheme.Result & Conclusion: Among the two depressed schemes and the two elevated schemes, the maximum vertical displacement of the former is 8.40 mm, while the maximum vertical displacement of the latter is 21.70 mm, about 2.6 times higher. After the construction is completed, the final vertical displacements are 1.34 mm for the depressed schemes and 10.50 mm for the elevated schemes. In the former, the final vertical displacement is 1.42 mm for the fullsection entry scheme and 1.26 mm for the halfsection entry scheme. Considering the stress analysis results of support structures for four schemes, the depressed fullsection entry scheme exhibits lower support structure stress while meeting the strength requirements, making it the optimal solution.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 城市轨道交通“绿智融合”的发展新趋势