地铁无功功率补偿优化策略

李立颖1王洪杰1何治新1邹大云2解凯2金海奇2曾佳欣3张戬3

Optimization Strategy for Metro Reactive Power Compensation

LI LiyingWANG HongjieHE ZhixinZOU DayunXIE KaiJIN HaiqiZENG JiaxinZHANG Jian
  • 作者信息:
    1.广州地铁设计研究院股份有限公司, 510010, 广州
    2.南京南瑞继保电气有限公司, 211102, 南京
    3.西南交通大学电气工程学院, 610031, 成都
  • Affiliation:
    Guangzhou Metro Design & Research Institute Co., Ltd., 510010, Guangzhou, China
  • 关键词:
  • Key words:
  • DOI:
    10.16037/j.1007-869x.2023.09.036
  • 中图分类号/CLCN:
    U224.8
  • 栏目/Col:
    应用技术
摘要:
目的:为了解决因系统功率因数降低导致的无功返送问题,需研究地铁无功功率补偿优化策略,重点研究地铁牵引供电系统在集中式无功补偿背景下的SVG(静止无功发生器)容量设计问题。方法:以广州某地铁线路为例,在该地铁线路运营初期,对某牵引降压混合所(以下简称“牵混所”)整流机组高峰时段和低谷时段的负荷过程进行实测分析。基于城市轨道交通直流牵引供电仿真平台及列车实迹运行图,通过交直流交替迭代潮流计算,将该牵混所整流机组负荷过程的仿真结果与实测结果进行对比,验证了所提算法的有效性。在满足PCC(公共连接点)处功率因数要求的前提下,提出SVG无功补偿容量设计方法。综合考虑测试线路初期、近期、远期行车计划,对该线路每个时期的高峰、低谷及非运营时段进行供电仿真,并计算所需补偿的无功功率。根据无功补偿优化策略,给出SVG的安装容量。结果及结论:算例线路中主变电所MSUB2左变压器35 kV侧SVG所需补偿的无功功率最大值为7.19 Mvar,其右变压器35 kV侧SVG所需补偿的无功功率最大值为2.81 Mvar。考虑10%左右的裕度,对SVG进行设备选型,则MSUB2的左、右变压器35 kV侧SVG的安装容量分别为8 Mvar和3 Mvar。该无功功率补偿优化策略适用于集中式补偿方案下地铁线路的SVG容量设计。
Abstracts:
Objective: To address the issue of reactive power backflow caused by a decrease in system power factor, it is necessary to study the optimization strategy for metro reactive power compensation. The capacity design of SVG (static var generator) in metro traction power supply system under centralized reactive power compensation is emphatically studied. Method: Taking a line of Guangzhou Metro as example, at initial operation stage of the metro line, the load processes during peak and offpeak periods at a THS (traction voltage reduction hybrid substation) are fieldmeasured and analyzed. Based on the urban rail transit DC traction power supply simulation platform and train operation diagram of an actual trajectory, the AC/DC alternating iterative power flow calculation is performed to compare the simulated and fieldmeasured results of THS rectifier unit load process, thus validating the effectiveness of the proposed algorithm. Under the premise of meeting the power factor requirements at the PCC (point of common coupling), a design method of SVG reactive power compensation capacity is proposed. Considering the initial, near and longterm train schedules of the test line comprehensively, power supply simulation is carried out for peak, offpeak, and nonoperating periods, and the required reactive power compensation is calculated. Based on its optimization strategy, the SVG installation capacity is determined. Result & Conclusion: In the case study, the maximum reactive power compensation required for the 35 kV side SVG connected to the left transformer of the main substation MSUB2 is 7.19 MVar, it is 2.81 MVar for the right transformer 35 kV side SVG. Considering a margin of approximately 10%, equipment selection is performed for SVG, and installation capacities for the left and right transformers 35 kV side SVGs are 8 MVar and 3 MVar respectively. This reactive power compensation optimization strategy is applicable for SVG capacity design of metro lines under centralized compensation scheme.
论文检索