储能式轨道列车非接触牵引供电系统设计与效率优化
杨鹏李美征陈敬东田裕鹏李东义
Contactless Traction Power Supply System Design and Efficiency Optimization of Battery Energy Storage Rail Trains
YANG PengLI MeizhengCHEN JingdongTIAN YupengLI Dongyi
-
作者信息:中车青岛四方车辆研究所有限公司, 266031, 青岛
-
Affiliation:CRRC Qingdao Sifang Rolling Stock Research Institute Co., Ltd., 266031, Qingdao, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2024.04.015
-
中图分类号/CLCN:U223.2:U231.8
-
栏目/Col:研究报告
摘要:
[目的]非接触供电方式凭借其原副边线圈无直接电气接触的优点,目前在轨道交通行业内有探索性的应用。大功率、高频化的应用场景给非接触供电系统的设计、器件选型及耦合机构的设计带来了一定的难度,需要对其设计方案及效率进行优化。[方法]针对轨道交通应用场景,介绍了基于LCC-S型补偿拓扑的非接触牵引供电系统的系统结构,设计了250 kW非接触供电系统,原边线圈与副边接收线圈均采用双D形线圈。研究了耦合线圈的互感及磁性材料的损耗等因素对系统效率的影响,建立了系统的电路模型及耦合线圈模型。基于模型对系统进行了仿真,对副边线圈不同区域的磁芯厚度进行了参数优化。搭建了非接触牵引供电系统试验平台,并进行了250 kW功率等级的试验,以验证本优化方法的有效性。[结果及结论]仿真与试验结果验证了该优化方法的有效性与可行性,磁芯布局的优化措施可有效保证线圈互感并降低磁芯损耗。系统具备了额定工况250 kW大功率输出的能力。在气隙高度为70 mm、80 mm下,系统的静态工作效率及动态工作效率均大于90%。
Abstracts:
[Objective] Contactless power supply method, leveraging the advantages of no direct electrical contact between the primary and secondary side coils, is currently being explored in the rail transit industry. The high-power, high-frequency application scenarios pose challenges in the design of the contactless traction power supply system, component selection, and coupling mechanism design. It requires optimization of the design scheme and system efficiency. [Method] For rail transit application scenarios, the system structure of a contactless traction power supply system based on the LCC-S (inductance-capacitor-capacitor-series) compensation topology is introduced. A 250 kW contactless power supply system is designed, utilizing double D-shaped coils for the primary track coils and secondary receiving coils. The impact of factors such as mutual inductance of coupling coils and losses in magnetic materials on system efficiency is studied. System circuit model and coupling coil model are established. The system is simulated based on the model, and parameters for the magnetic core thickness in different regions of the secondary coils are optimized. An experimental platform for contactless traction power supply system is built, and tests are conducted at a power level of 250 kW to validate the effectiveness of the design optimization method. [Result & Conclusion] The simulation and experimental results confirm the effectiveness and feasibility of the design optimization method. Optimization of the core layout ensures coil mutual inductance and reduces core losses. The system demonstrates the capability of delivering a rated output power of 250 kW. Under air gap heights of 70 mm and 80 mm, the static and dynamic operating efficiencies of the system are both greater than 90%.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 打造系列化、智能化市域列车平台