基于多重降噪自编码网络的接触网开口销缺失识别方法

单翀皞

Identification Method for Missing Cotter Pins in Catenary Systems Based on Stacked Denoising Autoencoder Network

SHAN Chonghao
摘要:
[目的]使用卷积神经网络对接触网开口销进行状态检测时,因正负样本数量不均衡,网络模型对开口销缺失的检出率不高。因此使用单阶段检测网络对开口销进行多级精确定位,并结合多重降噪自编码网络对开口销状态特征进行重构,实现对开口销缺失的高效检测。[方法]首先使用单阶段定位检测网络对开口销进行位置回归,将定位结果作为多重降噪自编码网络输入,并在不同深度的降噪自编码网络结构层中加入不同程度的深度噪声,通过最小化其重构误差来实现对开口销局部图像的语义理解,进而实现对开口销状态的精准判断;同时,因对开口销局部图像尺寸进行了限制,所以多重降噪自编码网络的计算量相对较小,网络时间复杂度较低。[结果及结论]大量试验结果表明,基于YOLOv5算法的多重降噪自编码网络能实现对接触网各位置开口销缺失情况的精准检出。
Abstracts:
[Objective] When using convolutional neural networks (CNNs) for the state detection of catenary system cotter pins, the imbalance between positive and negative samples leads to a low detection rate of missing pins in the network model. Thus, a single-stage detection network is employed for multi-level precise localization of cotter pins, the state features of the cotter pins are reconstructed in combination with SDAE (stacked denoising autoencoder), thereby achieving efficient detection of missing cotter pins. [Method] First, a single-stage localization detection network is employed for the regression of cotter pin positions, and the localization results are used as input for SDAE. Different levels of depth noise are introduced into various structural layers of the denoising autoencoder network. By minimizing reconstruction errors, the method enhances semantic understanding of the cotter pin localized images, allowing for accurate assessment of their condition. Additionally, due to the constraints on the size of the localized images, the computational load of the SDAE is relatively low, same with the network time complexity. [Result & Conclusion] Extensive experimental results demonstrate that the SDAE, based on YOLO v5 algorithm, can accurately detect missing cotter pins at various locations within the catenary system.
论文检索