高速铁路动车组升力翼结构运动的主动控制技术

朱彦1王成强1向超群2范子寅2高世卿3王蕾1

Active Control Technology for Lift Wing Structure Motion in High-speed Railway EMU

ZHU Yan1WANG Chengqiang1XIANG Chaoqun2FAN Ziyin2GAO Shiqing3WANG Lei1
  • 作者信息:
    1.中车长春轨道客车股份有限公司国家轨道客车工程研究中心,130062,长春
    2.中南大学交通运输工程学院,410083,长沙
    3.济南中车四方所智能装备科技有限公司,250109,青岛
  • Affiliation:
    1.National Engineering Research Center of Railway Vehicles, CRRC Changchun Railway Vehicles Co., Ltd., 130062, Changchun, China
    2.School of Traffic and Transportation Engineering, Central South University, 410083, Changsha, China
    3.Jinan CRRC SRI Intelligent Equipment Technology Co., Ltd., 250109, Qingdao, China
  • 关键词:
  • Key words:
  • DOI:
    10.16037/j.1007-869x.2025.02.020
  • 中图分类号/CLCN:
    U266
  • 栏目/Col:
    研究报告
摘要:
[目的]高速铁路动车组升力翼结构可以降低车辆轮轨间的摩擦阻力,减少车轮磨损。但由于高速铁路动车组的运行工况复杂多变,升力翼所承受的动态载荷在不断变化,为确保动车组安全、高效运行,同时充分发挥升力翼结构的节能减阻效能,需为升力翼设计合适的控制方案。[方法]介绍了升力翼的整体结构组成,提出了升力翼结构运动的主动控制方案。其中,为底部旋转装置设计了基于位置跟踪的多变量耦合系统解耦控制算法;为攻角变换装置设计了基于LADRC(线性自抗扰控制)的交叉耦合协同控制算法;为翼尾伸缩装置设计了控制流程和到位停车电路方案。搭建仿真模型,验证了所提底部旋转控制方案、攻角变换控制方案的控制效果。[结果及结论]升力翼结构运动的主动控制方案可以满足升力翼的功能需求,包括底部旋转装置的到位精度要求、攻角变换装置的同步控制要求及翼尾伸缩装置的匀速运动和到位停车要求。该方案弥补了既有控制方案的不足,提高了升力翼的安全性、稳定性及可靠性。
Abstracts:
[Objective] The lift wing structure of high-speed railway EMU (electric multiple units) can reduce the wheel-rail frictional resistance, thereby decreasing wheel wear. However, due to the complex and variable operating conditions of high-speed railway EMU, the dynamic loads on the lift wing constantly fluctuate. To ensure the safe and efficient operation of EMU while maximizing the energy-saving and drag-reduction performance of the lift wing structure, a suitable control scheme for the lift wing is required. [Method] The overall structural composition of the lift wing is introduced, and an active control scheme for its motion is proposed. A decoupling control algorithm for a multi-variable coupled system based on position tracking is designed for the bottom rotation mechanism. For the angle-of-attack transformation mechanism, a cross-coupled collaborative control algorithm based on LADRC (linear active disturbance rejection control) is developed. A control process and in-place parking circuit scheme is designed for the wing-tail extension mechanism. Simulation models are constructed to validate the control performance of the proposed bottom rotation and angle-of-attack transformation control schemes. [Result & Conclusion] The active control scheme for lift wing structure motion can meet the functional requirements of the lift wing, including the positioning accuracy of the bottom rotation mechanism, the synchronization control requirements of the angle-of-attack transformation mechanism, and the uniform motion and in-place parking requirements of the wing-tail extension mechanism. This scheme addresses deficiencies in existing control methods, enhancing the safety, stability, and reliability of the lift wing.
论文检索