基于数字孪生的高可靠性城市轨道交通永磁牵引系统发展展望

周成尧1司玉林2赵雷廷3唐蕾3

Development Prospect of High-reliability Urban Rail Transit Permanent Magnet Traction System Based on Digital Twin Technology

ZHOU Chengyao1SI Yulin2ZHAO Leiting3TANG Lei3
  • 作者信息:
    1.北京市轨道交通运营管理有限公司, 100068, 北京
    2.铁科院(北京)工程咨询有限公司, 100081, 北京
    3.北京纵横机电科技有限公司, 100094, 北京
  • Affiliation:
    1.Beijing Metro Operation Administration Co., Ltd., 100068, Beijing, China
    2.Engineering Consulting Co., Ltd., CARS, 100081, Beijing, China
    3.Beijing Zongheng Electro-Mechanical Technology Co., Ltd., 100094, Beijing, China
  • 关键词:
  • Key words:
  • DOI:
    10.16037/j.1007-869x.2025.03.016
  • 中图分类号/CLCN:
    U264.1
  • 栏目/Col:
    研究报告
摘要:
[目的]随着永磁同步电机设计及控制技术日趋成熟,永磁牵引系统已成为新一代轨道交通牵引系统的发展方向。利用数字孪生技术可实现城市轨道交通列车永磁牵引系统的高可靠性和智能化提升。需以实现系统数字设计、状态感知、故障反演、健康管理及性能预测为目标,对构建永磁牵引系统数字孪生平台的关键技术进行探究。[方法]首先对永磁牵引系统和数字孪生技术的特点和应用现状进行了综述。进而针对具有高速移动、多物理场耦合、多时间尺度、动态特性丰富等特点的城市轨道交通列车牵引系统,提出了基于模型与数据混合驱动的多时间尺度数字孪生架构设想,以及利用数字孪生技术实现系统集成及匹配优化设计、永磁电机控制性能提升、系统故障预警及故障反演等功能的可行性技术方案。[结果及结论]数字孪生技术可提升永磁牵引系统的可靠性、安全性,优化系统智能感知水平,为系统性能预测、健康管理乃至车辆的智能运维提供良好技术支撑。基于数字孪生的高可靠性城市轨道交通永磁牵引系统在实际应用中仍面临物理场建模、车地信息交互等技术难点。
Abstracts:
[Objective] With the maturity of permanent magnet synchronous motor design and control technologies, PMTS (permanent magnet traction systems) have emerged as the developmental direction for next-generation rail transit traction systems. By leveraging digital twin technology, it is possible to enhance the reliability and intelligence of PMTS in urban rail transit trains. This requires targeting the realization of system digital design, state perception, fault inversion, health management, and performance prediction while exploring the key technologies for constructing a PMTS digital twin platform. [Method] First, a review of PMTS characteristics and current applications and digital twin technology is conducted. Then, considering the features of urban rail transit train traction system such as high-speed mobility, multi-physical field coupling, multi-time-scale interactions, and rich dynamic characteristics, a multi-time-scale digital twin architecture based on hybrid drive of model and data is proposed. Feasible technical solutions for achieving system integration and matching optimization design, improving the control performance of permanent magnet motors, and implementing system fault warning and inversion through digital twin technology are discussed. [Result & Conclusion] Digital twin technology can enhance reliability and safety of PMTS, optimize intelligent system perception, and provide strong technical support for system performance prediction, health management, and intelligent vehicle operation and maintenance. However, practical application of high-reliability urban rail transit PMTS based on digital twins still faces technical challenges such as physical field modeling and vehicle-wayside information interaction.
论文检索