融合RCM、PHM和数据挖掘的城市轨道交通车辆 维护决策技术研究

高明亮1高珊1于闯1石海明1刘德权1邵俊捷1贾颜菽2唐玉清1莫柳松3

Research on Urban Rail Transit Vehicle Maintenance Decision-making Technology Integrating RCM, PHM and Data Mining

GAO MingliangGAO ShanYU ChuangSHI HaimingLIU DequanSHAO JunjieJIA YanshuTANG YuqingMO Liusong
摘要:
提出了一种用于轨道交通车辆系统维修决策的RCM(以可靠性为中心的维修)可靠性评估的新方法。 针对轨道交通车辆系统故障机理复杂,影响因素冗多,提出基于RCM、PHM(故障预测与健康管理)和数据挖掘算法相融合的方法来构建系统的维护决策模型。与传统方法的区别在于,该方法能够更精准地定义维护模型,并获得系统的最优维护间隔,计算效率高,适用于复杂状态系统的可靠性计算。该方法可有效降低传统RCM的维护不足现象,降低运维成本,具有一定的推广应用价值。
Abstracts:
A new method of RCM reliability assessment for rail transit vehicle system maintenance decision\|making is proposed. The fault mechanism of rail transit vehicle system is complicated, and the influencing factors are redundant. A method based on the integration of RCM, PHM and data mining algorithms is proposed to construct a system maintenance decision\|making model. The difference with conventional method is that the proposed improved maintenance decision\|making method can define the maintenance model with higher accuracy and acquire the optimal maintenance interval of the system. The calculation is highly efficient and applicable for the reliability calculation of complex state system. This method can effectively reduce the under maintenance situation of conventional RCM, and reduce operation and maintenance costs, possessing certain promotion and application value.
引文 / Ref:
高明亮,高珊,于闯,等.融合RCM、PHM和数据挖掘的城市轨道交通车辆维护决策技术研究[J].城市轨道交通研究,2021,24(2):64.
GAO Mingliang,GAO Shan,YU Chuang,et al.Research on Urban Rail Transit Vehicle Maintenance Decision-making Technology Integrating RCM, PHM and Data Mining[J].Urban mass transit,2021,24(2):64.
论文检索