基于LuGre模型的城市轨道交通列车盘形制动系统摩擦振动稳定性研究

方浩1,2王金海1,2杨建伟1,2李继山3,4赵鹏4王璇1,2

Stability Study of Friction Vibration for Urban Rail Transit Train Disc Braking System Based on LuGre Model

FANG Hao1,2WANG Jinhai1,2YANG Jianwei1,2LI Jishan3,4ZHAO Peng4WANG Xuan1,2
  • 作者信息:
    1.北京建筑大学机电与车辆工程学院, 102616, 北京
    2.北京建筑大学城市轨道交通车辆服役性能保障北京市重点实验室, 100044, 北京
    3.中国铁道科学研究院集团有限公司机车车辆研究所, 100081, 北京
    4.北京纵横机电科技有限公司, 100094, 北京
  • Affiliation:
    1.School of Electromechanical and Vehicle Engineering, Beijing University of Civil Engineering and Architecture, 102616, Beijing, China
    2.Beijing Key Laboratory of Service Performance Guarantee for Urban Railway Vehicles, Beijing University of Civil Engineering and Architecture, 100044, Beijing, China
    3.Locomotive and Car Research Institute, China Academy of Railway Sciences Group Co., Ltd., 100081, Beijing, China
    4.Beijing Zongheng Electromechanical Technology Corporation, 100094, Beijing, China
  • 关键词:
  • Key words:
  • DOI:
    10.16037/j.1007-869x.2025.04.004
  • 中图分类号/CLCN:
    U270.35
  • 栏目/Col:
    学术专论
摘要:
[目的]城市轨道交通列车盘形制动摩擦复杂多变,传统的静态摩擦模型难以揭示制动系统的动态特性,有必要建立动态摩擦模型分析盘形制动系统动力学特性。[方法]利用LuGre动态摩擦模型建立盘形制动系统二自由度动力学方程,采用数值分析的方法求解,获得闸片在不同情况下的振动响应,分析角速度、制动压力和摩擦因数差值对制动系统稳定性的影响。[结果及结论]随着制动角速度的增加,制动系统逐渐从黏滑振动转变为稳定振动,高于临界角速度时制动系统振幅增加,制动系统进入稳定状态所需的时间增加;制动压力增大,闸片从稳定运动向黏滑运动过渡,振动变得复杂且不规律。随着制动压力的增加,闸片的振幅逐渐增加,振动强度越来越大;摩擦因数差值的增加会增大振幅。经综合考虑,摩擦因数差值为0.2时,制动系统处于最佳稳定状态。
Abstracts:
[Objective] The complexity and variability of friction in urban rail transit train disc brakes make it challenging for traditional static friction models to reveal the dynamic characteristics of the braking system. It is necessary to establish a dynamic friction model to analyze the dynamic characteristics of the disc brake system. [Method] Using the LuGre dynamic friction model, a two-degree-of-freedom dynamic equation for the disc brake system is established and solved by numerical analysis. The vibration response of the brake pad under different conditions is obtained, and the influence of the angular velocity, brake pressure and friction factor difference on the brake system stability is analyzed. [Result & Conclusion] With the increase of braking angular velocity, the brake system gradually changes from stick-slip vibration to stable vibration. When the angular velocity is higher than the critical angular velocity, the brake system amplitude increases, and the time required for the brake system to enter into the stable state also increases; as the braking pressure increases, the brake pad transitions from stable motion to stick-slip motion, and the vibration becomes complex and irregular. With the increase of braking pressure, the amplitude of the brake pad gradually increases, and the vibration intensity gets greater and greater; the amplitude increases with an increase in the friction coefficient difference. Upon comprehensive analysis, the brake system achieves optimal stability state at a friction coefficient difference of 0.2.
论文检索