降低地铁列车火灾报警系统误报率策略研究
张潜徐少红薛宏佺
Research on False Alarm Rate Reducing Strategies for Subway Train Fire Alarm System
ZHANG QianXU ShaohongXUE Hongquan
-
作者信息:中车南京浦镇车辆有限公司, 210031, 南京
-
Affiliation:CRRC Nanjing Puzhen Vehicle Co., Ltd., 210031, Nanjing, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2025.05.047
-
中图分类号/CLCN:U231.96
-
栏目/Col:车辆制造与列车控制
摘要:
[目的]地铁列车火灾报警误报率高,为了减少因误报导致的运营干扰和资源浪费,提升地铁运营的安全性和乘客的出行体验,有必要研究有效降低地铁列车火灾报警系统误报率的策略。[方法]介绍了火灾报警系统;调研地铁列车火灾报警系统历史数据,分析火灾误报警主要类型及潜在原因。[结果及结论]环境因素影响、探测器选型、探测器检测原理、软件算法是导致误报警的主要原因。通过增加防尘过滤装置、采用双光源探测器、多参量气体探测器、热解粒子式探测器等硬件优化方式可以降低误报率;通过优化软件算法(优化建模法、报警阈值自动调整法、机器自学习算法等)可以降低误报率。结合多参量采集单元探测与智能分析算法,区分灰尘、水汽、烟雾粒子等干扰因素也可以降低误报率,提高火灾探测系统的抗干扰能力与可靠性。
Abstracts:
[Objective]Given the high false alarm rate in subway train fire alarm systems, it is necessary to study strategies of effectively reducing the false alarm rate, so as to minimize operational disruptions and resource waste caused by false alarms, enhancing subway operation safety and passengers′ travel experience. [Method]Through the introduction of fire alarm system and the investigation of subway train fire alarm system historical data, main types and potential causes of false fire alarms are analyzed. [Result & Conclusion]Environmental factors, detector type selection, detector detection principle, and software algorithm are identified as main causes for false fire alarms. The false alarm rate can be reduced by hardware optimization methods such as adding dust filter devices, adopting dual light source detectors, multi-parameter gas detectors and pyrolysis particle detectors; the rate can also be reduced by optimizing software algorithms (optimization modeling method, automatic adjustment of alarm thresholds, machine self-learning algorithm, etc.). Combining multi-parameters acquisition unit detection with intelligent analysis algorithms, distinguishing interference factors such as dust, water vapor, and smoke particles can also reduce the false alarm rate and improve the anti-interference ability and reliability of the fire detection system.