基于路况运行数据的数字轨道电车燃料电池混合动力系统参数匹配方法

Parameter Matching Method for Fuel-cell Hybrid Power Systems of Virtual Track Tram Based on Road-condition Operating Data

  • 摘要:
    目的 对于数字轨道电车采用的燃料电池+超级电容混合动力电池系统,既有参数匹配方法存在估算精度低及难以多目标同时优化等短板。为精确计算车辆运行工况,进而避免极端工况给匹配结果带来的容量冗余,有必要研究基于路况运行数据的参数匹配方法
    方法 对燃料电池系统、超级电容系统及储氢系统建立体积、质量模型,并引入车辆行驶里程等关键指标。基于实际线路速度数据,提出一种基于双移动均值滤波的工况计算方法,实现了对车辆线路工况的估算。基于估算的数据,采用多目标遗传进化算法中的NSGA-Ⅲ(非支配排序遗传算法Ⅲ),得到了动力系统配置方案的帕累托前沿,进而完成混合动力系统的参数匹配。基于某数字轨道电车的实际运行数据进行验证。
    结果及结论 基于实际运行数据的计算结果表明,双移动均值滤波器结构不仅能规避直接计算所造成的误差,还能保持与实际功率曲线较高的契合度,充分说明了该滤波结构的有效性。多目标优化的帕累托前沿结果表明,动力系统体积和质量会直接影响车辆行驶里程。该参数匹配方法,能够在维持车辆正常运行的基础上有效提升车辆的行驶里程,实现对车辆动力系统的质量、体积及行驶里程的协同优化。

     

    Abstract:
    Objective For the fuel-cell + supercapacitor hybrid power battery system adopted in virtual track tram, existing parameter matching methods have shortcomings such as low estimation accuracy and difficulty in achieving simultaneous multi-objective optimization. To accurately calculate vehicle operating conditions and thereby avoid capacity redundancy caused by extreme conditions, it is necessary to study a parameter matching method based on road-condition operating data.
    Method Volume and mass models are established for the fuel-cell system, supercapacitor system, and hydrogen storage system, and key indicators such as vehicle driving range are introduced. Based on actual line speed data, a working condition calculation method using dual moving-average filtering is proposed to estimate line operating conditions of the vehicle. According to the estimated data, the NSGA-III (non-dominated sorting genetic algorithm III) in the multi-objective evolutionary algorithm framework is used to obtain the Pareto front of power system configuration schemes, thereby completing the parameter matching of the hybrid power system. Verification is conducted using the actual operation data of a virtual track tram.
    Result & Conclusion  Calculation results based on actual operating data indicate that the dual moving-average filter structure not only avoids errors caused by direct calculation, but also maintains a high degree of conformity with the actual power curve, fully demonstrating the effectiveness of the filtering structure. The Pareto front results of multi-objective optimization show that the volume and mass of the power system may directly affect the vehicle operating mileage. The proposed parameter matching method can effectively improve the driving range of the vehicle while maintaining normal operation, achieving coordinated optimization of the power system mass, volume, and driving range.

     

/

返回文章
返回