轨道客车多维速度检测信息的数据融合技术

朱彦赵海波

Data Fusion of Multi-dimensional Speed Measuring Technology for Rail Transit Vehicle

ZHU YanZHAO Haibo
摘要:
为充分发挥各种轨道客车速度检测装置在不同工况下的性能优势,针对来源于轴端速度传感器、多普勒雷达、北斗导航系统及惯性导航的多维速度检测信号,采用扩展式卡尔曼滤波算法进行数据融合,在线调整算法中各信号的参数权重,实现对轨道客车速度信息的最优估计。仿真验证结果表明,该技术能够得到真实可靠的轨道客车速度信息。
Abstracts:
To give full play to the performance advantages of various speed sensors for rail transit vehicles in different working conditions, the data gained by the multi-dimensional sensor measuring of axle-end speed sensor, Doppler radar, Beidou navigation system and INS (inertial navigation system) are integrated through the extended Kalman filtering. Then, the weights of each signal in the algorithm are on-line adjusted to realize the optimum evaluation of the rail transit vehicle speed. The simulation results show that the algorithm can obtain the real and reliable train speed information.
引文 / Ref:
朱彦,赵海波.轨道客车多维速度检测信息的数据融合技术[J].城市轨道交通研究,2019,22(2):9.
ZHU Yan,ZHAO Haibo.Data Fusion of Multi-dimensional Speed Measuring Technology for Rail Transit Vehicle[J].Urban mass transit,2019,22(2):9.
论文检索