基于深度置信网络的牵引电机轴承故障诊断方法
涂小卫1张士强2王明2
Fault Diagnosis Methodology Based on Deep-Confidence Network Traction Motor Bearing
TU XiaoweiZHANG ShiqiangWANG Ming
-
作者信息:1.上海申通地铁集团有限公司技术中心,201103 ,上海;
2.株洲中车电力机车研究所有限公司,412001,株洲
-
Affiliation:Technology Center, Shanghai Shentong Metro Group Co., Ltd., 201103, Shanghai, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2020.01.042
-
中图分类号/CLCN:TM307
-
栏目/Col:应用技术
摘要:
随着通信、存储技术的不断进步,轨道交通已向“车辆大数据”的方向发展,对故障诊断技术提出了更高的要求。给出了一种FFT+DBN+参数寻优的牵引系统电机轴承诊断方法,完成了无监督特征提取与有监督微调网络模型的构建,解决了网络参数设置难的问题,并有效提高故障识别准确度,为电机轴承故障诊断提供了解决方案,具有很强的工程应用价值。
Abstracts:
With the continuous progress of communication and storage technologies, urban rail transit has started the development towards the direction of "Vehicle Big Data", which puts forward higher requirements for fault diagnosis technology. A diagnosis methodology of motor bearings in traction system based on FFT+DBN+parameter optimization is proposed, which completes the unsupervised feature extraction and the construction of supervised fine tuning network mode, solves the problems in network parameter setting , improves the accuracy of fault identification. At the same time, the methodology provides a solution to fault diagnosis of motor bearings and therefore has strong engineering application value.
引文 / Ref:
涂小卫,张士强,王明.基于深度置信网络的牵引电机轴承故障诊断方法[J].城市轨道交通研究,2020,23(1):174.
TU Xiaowei,ZHANG Shiqiang,WANG Ming.Fault Diagnosis Methodology Based on Deep-Confidence Network Traction Motor Bearing[J].Urban mass transit,2020,23(1):174.
TU Xiaowei,ZHANG Shiqiang,WANG Ming.Fault Diagnosis Methodology Based on Deep-Confidence Network Traction Motor Bearing[J].Urban mass transit,2020,23(1):174.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 新冠肺炎疫情防控与新型城市轨道交通系统开发