基于主元分析- 概率神经网络的车辆受电弓故障诊断
王宇刘若晨
Pantograph Fault Diagnosis Based on Principal Component Analysis and Probabilistic Neural Network
WANG YuLIU Ruochen
-
作者信息:江苏理工学院交通运输系,213001,常州
-
Affiliation:Jiangsu University of Technology,213001,Changzhou,China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2021.01.019
-
中图分类号/CLCN:TM922.61; TP277
-
栏目/Col:研究报告
摘要:
在城市轨道交通车辆受电弓日常检修过程中,大量 检修及故障数据未得到合理利用。 针对计划检修已不能满足 目前受电弓检修要求的问题,提出了一种基于主元分析和概 率神经网络结合的故障诊断方法。 该方法运用主元分析法对 受电弓日常检修中的初始特征参数进行降维,将降维后特征 参数输入到概率神经网络模型中进行故障诊断,判定受电弓 故障模式。 仿真结果表明,该诊断方法耗时短、正确性高。
Abstracts:
During the urban rail transit vehicle pantograph routine maintenance process,a large number of overhaul and fault data are not rationally used. Targeting the problem that planned maintenance can no longer meet the current pantograph maintenance requirements,a fault diagnosis method based on principal component analysis and probabilistic neural network is proposed. This method uses the principal component analysis to reduce dimension of the initial feature parameters from pantograph daily maintenance. The feature parameters after dimension reduction are input into the probabilistic neural network model for fault diagnosis,to determine the pantograph failure mode. The simulation results show that this diagnostic method takes less time and has high diagnostic accuracy.
引文 / Ref:
王宇,刘若晨.基于主元分析-概率神经网络的车辆受电弓故障诊断[J].城市轨道交通研究,2021,24(1):88.
WANG Yu,LIU Ruochen.Pantograph Fault Diagnosis Based on Principal Component Analysis and Probabilistic Neural Network[J].Urban mass transit,2021,24(1):88.
WANG Yu,LIU Ruochen.Pantograph Fault Diagnosis Based on Principal Component Analysis and Probabilistic Neural Network[J].Urban mass transit,2021,24(1):88.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 城市数字化转型给轨道交通带来的机遇和挑战