城市轨道交通进出站短时客流预测模型研究
蔡昌俊
Study on Urban Rail Transit Entry and Exit Short-term Passenger Flow Prediction Model
CAI Changjun
-
作者信息:广州地铁集团有限公司,510335,广州
-
Affiliation:Guangzhou Metro Group Co., Ltd., 510335, Guangzhou, China
-
关键词:
-
Key words:
-
DOI:10.16037/j.1007-869x.2021.09.004
-
中图分类号/CLCN:U293.13
-
栏目/Col:研究报告
摘要:
针对城市轨道交通短时进出站客流的强随机性、周期性及非线性的特征,提出了一种基于小波变换与Adam算法优化的长短时记忆网络(LSTM)短时客流组合预测模型(即WTLSTM组合模型),同时基于非饱和激活函数ReLU函数实现了LSTM的学习与训练。采用LSTM模型与WTLSTM组合模型对广州地铁广州塔站的客流量进行预测,并对预测结果的误差进行对比分析。结果表明,WTLSTM组合模型能够较好地预测短时客流,预测结果优于单一LSTM模型。
Abstracts:
In view of short-term passenger flow in urban rail transit having characteristics of strong randomness, periodicity and nonlinearity, a combined forecasting model (WT-LSTM combined model) of shortterm passenger flow based on wavelet transform and LSTM (long short-term memory network) optimized by Adam algorithm is proposed. Meanwhile, the LSTM model is learned and trained by the unsaturated activation function ReLU function. Passenger flow at Guangzhou Metro Canton Tower station is predicted using LSTM single model and WT-LSTM combined model, and the error of the prediction results is compared and analyzed. Result shows that the WT-LSTM model can predict short-term passenger flow well, and the prediction effect of it is better than that of LSTM single model.
引文 / Ref:
蔡昌俊.城市轨道交通进出站短时客流预测模型研究[J].城市轨道交通研究,2021,24(9):14.
CAI Changjun.Study on urban rail transit entry and exit short-term passenger flow prediction model[J].Urban Mass Transit,2021,24(9):14.
CAI Changjun.Study on urban rail transit entry and exit short-term passenger flow prediction model[J].Urban Mass Transit,2021,24(9):14.
- 上一篇: 高铁物流运输模式及其可行性
- 下一篇: 市郊铁路投融资模式选择策略研究